2,765 research outputs found

    The subdiffusive target problem: Survival probability

    Full text link
    The asymptotic survival probability of a spherical target in the presence of a single subdiffusive trap or surrounded by a sea of subdiffusive traps in a continuous Euclidean medium is calculated. In one and two dimensions the survival probability of the target in the presence of a single trap decays to zero as a power law and as a power law with logarithmic correction, respectively. The target is thus reached with certainty, but it takes the trap an infinite time on average to do so. In three dimensions a single trap may never reach the target and so the survival probability is finite and, in fact, does not depend on whether the traps move diffusively or subdiffusively. When the target is surrounded by a sea of traps, on the other hand, its survival probability decays as a stretched exponential in all dimensions (with a logarithmic correction in the exponent for d=2d=2). A trap will therefore reach the target with certainty, and will do so in a finite time. These results may be directly related to enzyme binding kinetics on DNA in the crowded cellular environment.Comment: 6 pages. References added, improved account of previous results and typos correcte

    Weak disorder: anomalous transport and diffusion are normal yet again

    Get PDF
    Particles driven through a periodic potential by an external constant force are known to exhibit a pronounced peak of the diffusion around a critical force that defines the transition between locked and running states. It has recently been shown both experimentally and numerically that this peak is greatly enhanced if some amount of spatial disorder is superimposed on the periodic potential. Here we show that beyond a simple enhancement lies a much more interesting phenomenology. For some parameter regimes the system exhibits a rich variety of behaviors from normal diffusion to superdiffusion, subdiffusion and even subtransport.Comment: Substantial improvements in presentatio

    Cooperation:Sociological aspects

    Get PDF

    An analytical approach to sorting in periodic potentials

    Get PDF
    There has been a recent revolution in the ability to manipulate micrometer-sized objects on surfaces patterned by traps or obstacles of controllable configurations and shapes. One application of this technology is to separate particles driven across such a surface by an external force according to some particle characteristic such as size or index of refraction. The surface features cause the trajectories of particles driven across the surface to deviate from the direction of the force by an amount that depends on the particular characteristic, thus leading to sorting. While models of this behavior have provided a good understanding of these observations, the solutions have so far been primarily numerical. In this paper we provide analytic predictions for the dependence of the angle between the direction of motion and the external force on a number of model parameters for periodic as well as random surfaces. We test these predictions against exact numerical simulations

    Multiplicative Noise: Applications in Cosmology and Field Theory

    Full text link
    Physical situations involving multiplicative noise arise generically in cosmology and field theory. In this paper, the focus is first on exact nonlinear Langevin equations, appropriate in a cosmologica setting, for a system with one degree of freedom. The Langevin equations are derived using an appropriate time-dependent generalization of a model due to Zwanzig. These models are then extended to field theories and the generation of multiplicative noise in such a context is discussed. Important issues in both the cosmological and field theoretic cases are the fluctuation-dissipation relations and the relaxation time scale. Of some importance in cosmology is the fact that multiplicative noise can substantially reduce the relaxation time. In the field theoretic context such a noise can lead to a significant enhancement in the nucleation rate of topological defects.Comment: 21 pages, LaTex, LA-UR-93-210

    Synchronization of globally coupled two-state stochastic oscillators with a state dependent refractory period

    Full text link
    We present a model of identical coupled two-state stochastic units each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition
    corecore